

COLLEGE OF AGRICULTURE COLLEGE OF ENGINEERING AGRICULTURAL AND BIOLOGICAL ENGINEERING

Four Quadrant Multi-Fluid Pump-Motor

CENTER FOR COMPACT AND EFFICIENT

John Lumkes Purdue University

- Potential of a four-quadrant multi-fluid pump/motor?
- How we are achieving this?
- What are the benefits?
- Results from the first mechanically actuated prototype.
- Moving forward...

Mechanically actuated valve prototype

Background

- Digital Four Quadrant Multi-fluid Pump/Motor
- Digital: utilizes digital displacement control

COLLEGE OF

AGRICULTURE

- On/off valves at inlet and outlet of each piston
- Four-quadrant: capable of pumping and motoring each in CW and CCW rotation
- Multi-fluid: pump lubrication does not depend on operating fluid

PURDUE	COLLEGE OF	COLLEGE OF	AGRICULTURAL AND
UNIVERSITY	AGRICULTURE	ENGINEERING	BIOLOGICAL ENGINEERING
Bene	fits		

- General digital pump/motor advantages
 - Eliminates valve plate losses
 - Leakage scales closely with displacement
 - Pumping of non-conventional fluids (water)
 - On/Off valves can open against high pressure
 - Four quadrant operation
 - Self starting in motoring

- Specific advantages of proposed approach
 - No need for pilot pressure
 - Higher efficiency
 - Simple, single lever, robust control of displacement
 - No electrical energy needed
 - Lower cost

PURDUE UNIVERSITY	AGRICULTURE	ENGINEERING		AGRICULIURA BIOLOGICAL ENGIN	AL AND EERING
Ор	erating Strategies				
0	 Flow Diverting Excess flow taken into the chamber is diverted back to the low pressure port 	20 Bar Inlet	Valve 1	Valve 2 320 Bar Outlet	
0	 Flow Limiting Amount of flow taken into the chamber is limited to the desired flow 				
0	Sequential (Diverting or Limiting) • Individual cylinders are operated at full or zero displacement				
		John Lumkes			6

Operating Strategies	
 Flow Diverting Excess flow taken into the chamber is diverted back to the low pressure port 	20 Ba Inlet
 Flow Limiting Amount of flow taken into the chamber is limited to the desired flow 	_
 Sequential (Diverting or Limiting) 	

COLLEGE OF

AGRICULTURE

DUE

 Individual cylinders are operated at full or zero displacement

Digital displacement control

COLLEGE OF

ENGINEERING

Electrically Actuated Valves (EAV)

Valves actuated using solenoids

COLLEGE OF

AGRICULTURE

- Low repeatability
- Requires additional sensors and embedded controls

Mechanically Actuated Valves (MAV)

- MAV Advantages
 - Fast actuation
 - No electrical energy needed
 - No additional sensors and embedded controls
 - Actuation repeatability is increased

COLLEGE OF

AGRICULTURE

• Critical for efficiency

COLLEGE OF

ENGINEERING

AGRICULTURAL AND

BIOLOGICAL ENGINEERING

Operating Strategy State Analysis

PURDUE	COLLEGE OF	COLLEGE OF	AGRICULTURAL AND
UNIVERSITY	AGRICULTURE	ENGINEERING	BIOLOGICAL ENGINEERING
Cam	Phasing		

Planetary Gearsets for Valve Opening/Closing (P/M Shaft connected to sun, cam masks connected to planetary carrier, adjustable rings)

PURDUE
UNIVERSITYCOLLEGE OF
AGRICULTURECOLLEGE OF
ENGINEERINGAGRICULTURAL AND
BIOLOGICAL ENGINEERING

Implementation

PURDUE UNIVERSITY

COLLEGE OF AGRICULTURE COLLEGE OF ENGINEERING

AGRICULTURAL AND BIOLOGICAL ENGINEERING

Prototype

Experimental Test Stand

COLLEGE OF

Multi-piston digital pump/motor test stand

 3-piston digital pump

- One on/off valves per piston
- One check valve per piston
- Three 2,000 Hz pressure transducers

COLLEGE OF

ENGINEERING

AGRICULTURAL AND BIOLOGICAL ENGINEERING

PURDUE UNIVERSITYCOLLEGE OF AGRICULTURECOLLEGE OF ENGINEERING	AGRICULTURAL AND BIOLOGICAL ENGINEERING
--	--

Experimental Testing

Results for Mechanical Actuation

- Partial flow diverting shown here
- Efficiency does not fall below 40%

Overall hydraulic efficiency for pumping at 300rpm (left), 500rpm (right)

PURDUE
UNIVERSITYCOLLEGE OF
AGRICULTURECOLLEGE OF
ENGINEERINGAGRICULTURAL AND
BIOLOGICAL ENGINEERING

John Lumkes

17

H	D	Ü	J	R	Γ)	Ü	j	Ð
TT	NT	Y	\$7	17	n	C	Ŷ	m	17

COLLEGE OF AGRICULTURE COLLEGE OF ENGINEERING

GT Suite Overview

- 1D multi-physics system simulation software
- GT-Suite Tools
 - CAD modeling and preparation
 - Converting 3D CAD model into GT model
 - Model building and run control
 - Post processing
- Hydraulics applications
 - System and component level models
 - Existing piston pump and valve component templates
 - Accurate pressure wave dynamics
 - Advanced features such as DoE and optimization

PURDUE UNIVERSITY	COLLEGE OF AGRICULTURE	COLLEGE OF ENGINEERING	AGRICULTURAL AND BIOLOGICAL ENGINEERING
Conve	erting to GT C	omponents	
	Split into individual par	ts Converted into pi	pes and flow-splits

PURDUE
UNIVERSITYCOLLEGE OF
AGRICULTURECOLLEGE OF
ENGINEERINGAGRICULTURAL AND
BIOLOGICAL ENGINEERINGMAV Inline Simulation

John Lumkes

22

One Piston Simulation

COLLEGE OF

AGRICULTURE

P

DUE

On/off valve

- Valve opening area
- Poppet parameters

John Lumkes

COLLEGE OF

ENGINEERING

AGRICULTURAL AND

BIOLOGICAL ENGINEERING

COLLEGE OF COLLEGE OF P DUE AGRICULTURE ENGINEERING **BIOLOGICAL ENGINEERING**

MAV Inline Simulation

103 bar, 500 rpm, 100% displacement

103 bar, 500 rpm, 100% displacement

John Lumkes

AGRICULTURAL AND

PURDUE
UNIVERSITYCOLLEGE OF
AGRICULTURECOLLEGE OF
ENGINEERINGAGRICULTURAL AND
BIOLOGICAL ENGINEERING

Inline Simulation Results

PURDUE	COLLEGE OF	COLLEGE OF	AGRICULTURAL AND
UNIVERSITY	AGRICULTURE	ENGINEERING	BIOLOGICAL ENGINEERING

Next Generation MAV

- Optimal design, open-ended approach
- Requirements
 - One cam assembly for all pistons
 - Minimal gearing
 - Smaller physical size
 - Four quadrant capability

Radial Piston Orientation

COLLEGE OF

AGRICULTURE

• Benefits

ĪF

- Access to valves
- Thru-shaft
- Modular and compact design
- Fewer moving parts

COLLEGE OF

John Lumkes

ENGINEERING

(

AGRICULTURAL AND

BIOLOGICAL ENGINEERING

PURDUE UNIVERSITY	COLLEGE OF AGRICULTURE	COLLEGE OF ENGINEERING	AGRICULTURAL AND BIOLOGICAL ENGINEERING
Radial I	Piston Orie	ntation	
		John Lumkes	30

	COLLEGE OF AGRICULTURE	COLLEGE OF ENGINEERING	AGRICULTURAL AND BIOLOGICAL ENGINEERING
Radial	Piston	Orientation	
			Image: contract of the second block

PURDUE	COLLEGE OF	COLLEGE OF	AGRICULTURAL AND
UNIVERSITY	AGRICULTURE	ENGINEERING	BIOLOGICAL ENGINEERING
Summary	Ý		

- Tested inline unit on existing digital pump/motor test stand
 - Results provided proof of concept for mechanical actuation
- Modeled and simulated inline unit
 - Validated modeling techniques
- Model and simulate radial unit
 - Use simulation to determine optimal parameters

PURDUE UNIVERSITY	COLLEGE OF AGRICULTURE	COLLEGE OF ENGINEERING	AGRICULTURAL AND BIOLOGICAL ENGINEERING
Conta	act Informat	ion	
John L <u>lumke</u>	umkes <u>s@purdue.edu</u>		
Agricu	ltural & Biological	Engineering	
225 S.	University St.		

West Lafayette, IN 47907